4 resultados para Folding and refolding proteins

em Glasgow Theses Service


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Monoclonal antibodies and novel antibody formats are currently one of the principal therapeutic in the biopharmaceutical industry worldwide and are widely used in the treatment of autoimmune diseases and cancer. It is for this reason that the productivity and quality of antibody production requires improvement; specifically investigations into the engineering of antibodies and any issues that may arise from the production of these therapeutics. The work presented in this thesis describes an investigation into the folding and assembly of seven antibodies plus the novel antibody format FabFv. IgG is comprised of two identical HCs and two identical LCs. The folding process of immunoglobulin is controlled by the CH1 domain within the HC. The CH1 domain remains in a disordered state and is sequestered by BiP in the endoplasmic reticulum. Upon the addition of a folded CL domain, BiP is displaced, the CH1 domain is able to fold and the complete IgG protein can then be secreted from the cell. The results presented in this thesis however, have outlined an additional mechanism for the folding of the CH1 domain. We have shown that the CH1 domain is able to fold in the absence of LC resulting in the secretion of HC dimers in a VH dependent manner. The proposed mechanism for the secretion of HC dimers suggests that some VH domains can interact with each other in order to bring the CH1 domains in close proximity to enable folding to occur. As HC dimer secretion is a hindrance in antibody production, this result has highlighted an engineering target to improve antibody yield. Examination of the folding of IgG4 with the variable region A33 has revealed the inability to secrete LC dimers, cleavage of the HC during expression and secretion of HC dimers in the Fab, FabFv and full length forms. The attributes described have also been shown to be variable region dependent. This has introduced a new concept that the variable domain is important in determining the expression and secretion of antibodies and their individual chains. Pulse chase and 2D gel electrophoresis analysis of the novel antibody format FabFv has revealed that the folding and expression of the LC and HC causes multimeric species of FabFv to be secreted, as opposed to the monomeric form which is the desired therapeutic. Our hypothesis is that this process occurs via a LC dependent mechanism. The proposed hypothesis suggests that further engineering to the LC could diminish the formation and secretion of FabFv multimers. The results from these investigations can be applied to increase the productivity of therapeutics and increase the biological understanding of the domain interactions of IgG during folding, assembly and secretion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acute phase proteins (APPs) are proteins synthesised predominantly in the liver, whose plasma concentrations increase (positive APP) or decrease (negative APP) as a result of infection, inflammation, trauma and tissue injury. They also change as a result of the introduction of immunogens such as bacterial lipopolysaccharide (LPS), turpentine and vaccination. While publications on APPs in chickens are numerous, the limited availability of anti-sera and commercial ELISAs has resulted in a lot of information on only a few APPs. Disease is a threat to the poultry industry, as pathogens have the potential to evolve, spread and cause rapid onset of disease that is detrimental to the welfare of birds. Low level, sub-acute disease with non-specific, often undiagnosed causes can greatly affect bird health and growth and impact greatly on productivity and profitability. Developing and validating methods to measure and characterise APPs in chickens will allow these proteins to be used diagnostically for monitoring flock health. Using immune parameters such as APPs that correlate with disease resistance or improvements in production and welfare will allow the use of APPs as selection parameters for breeding to be evaluated. For APPs to be useful parameters on which to evaluate chicken health, information on normal APP concentrations is required. Ceruloplasmin (Cp) and PIT54 concentrations were found to be much lower in healthy birds form commercial production farms than the reported normal values obtained from the literature. These APPs were found to be significantly higher in culled birds from a commercial farm and Cp, PIT54 and ovotransferrin (Ovt) were significantly higher in birds classified as having obvious gait defects. Using quantitative shotgun proteomics to identify the differentially abundant proteins between three pools: highly acute phase (HAP), acute phase (AP) and non-acute phase (NAP), generated data from which a selection of proteins, based on the fold difference between the three pools was made. These proteins were targeted on a individual samples alongside proteins known to be APPs in chickens or other species: serum amyloid A (SAA), C-reactive protein (CRP), Ovt, apolipoprotein A-I (apo-AI), transthyretin (Ttn), haemopexin (Hpx) and PIT54. Together with immunoassay data for SAA, Ovt, alpha-1-acid glycoprotein (AGP) and Cp the results of this research reveal that SAA is the only major APP in chickens. Ovotransferrin and AGP behave as moderate APPs while PIT54 and Cp are minor APPs. Haemopexin was not significantly different between the three acute phase groups. Apolipoprotein AI and Ttn were significantly lower in the HAP and AP groups and as such can be classed as negative APPs. In an effort to identify CRP, multiple anti-sera cross reacting with CRP from other species were used and a phosphorylcholine column known to affinity purify CRP were used. Enriched fractions containing low molecular weight proteins, elutions from the affinity column together with HAP, AP and NAP pooled samples were applied to a Q-Exactive Hybrid Quadrupole–Orbitrap mass spectrometer (Thermo Scientific) for Shotgun analysis and CRP was not identified. It would appear that CRP is not present as a plasma protein constitutively or during an APR in chickens and as such is not an APP in this species. Of the proteins targeted as possible novel biomarkers of the APR in chickens mannan binding lectin associated serine protease-2, α-2-HS-glycoprotein (fetuin) and major facilitator superfamily domain-containing protein 10 were reduced in abundance in the HAP group, behaving as negative biomarkers. Myeloid protein and putative ISG(12)2 were positively associated with the acute phase being significantly higher in the HAP and AP groups. The protein cathepsin D was significantly higher in both HAP and AP compared to the NAP indicating that of all the proteins targeted, this appears to have the most potential as a biomarker of the acute phase, as it was significantly increased in the AP as well as the HAP group. To evaluate APPs and investigate biomarkers of intestinal health, a study using re-used poultry litter was undertaken. The introduction of litter at 12 days of age did not significantly increase any APPs measured using immunoassays and quantitative proteomics at 3, 6 and 10 days post introduction. While no APP was found to be significantly different between the challenged and control groups at anytime point, the APPs AGP, SAA and Hpx did increase over time in all birds. The protein apolipoprotein AIV (apo-AIV) was targeted as a possible APP and because of its reported role in controlling satiety. An ELISA was developed, successfully validated and used to measure apo-AIV in this study. While no significant differences in apo-AIV plasma concentrations between challenged and control groups were identified apo-AIV plasma concentrations did change significantly between certain time points in challenged and control groups. Apoliporotein AIV does not appear to behave as an APP in chickens, as it was not significantly different between acute phase groups. The actin associated proteins villin and gelsolin were investigated as possible biomarkers of intestinal health. Villin was found not to be present in the plasma of chickens and as such not a biomarker target. Gelsolin was found not to be differentially expressed during the acute phase or as a result of intestinal challenge. Finally a proteomic approach was undertaken to investigate gastrocnemius tendon (GT) rupture in broiler chickens with a view of elucidating to and identify proteins associated with risk of rupture. A number of proteins were found to be differentially expressed between tendon pools and further work would enable further detailing of these findings. In conclusion this work has made a number of novel findings and addressed a number of data poor areas. The area of chicken APPs research has stagnated over the last 15 years with publications becoming repetitive and reliant on a small number of immunoassays. This work has sought to characterise the classic APPs in chickens, and use a quantitative proteomic approach to measure and categorise them. This method was also used to take a fresh approach to biomarker identification for both the APR and intestinal health. The development and validation of assays for Ovt and apo-AIV and the shotgun data mean that these proteins can be further characterised in chickens with a view of applying their measurement to diagnostics and selective breeding programs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The folding and targeting of membrane proteins poses a major challenge to the cell, as they must remain insertion competent while their highly hydrophobic transmembrane (TM) domains are transferred from the ribosome, through the aqueous cytosol and into the lipid bilayer. The biogenesis of a mature membrane protein takes place through the insertion and integration into the lipid bilayer. A number of TM proteins have been shown to gain some degree of secondary structure within the ribosome tunnel and to retain this conformation throughout maturation. Although studies into the folding and targeting of a number of membrane proteins have been carried out to date, there is little information on one of the largest class of eukaryotic membrane proteins; the G-protein-coupled receptors (GPCRs). This project studies the early folding events of the human ortholog of GPR35. To analyse the structure of the 1st TM domain, intermediates were generated and assessed by the biochemical method of pegylation (PEG-MAL). A structurally-similar microbial opsin (Bacterioopsin) was also used to investigate the differences in the early protein folding within eukaryotic and prokaryotic translation systems. Results showed that neither the 1st TM domain of GPR35 nor Bacterioopsin were capable of compacting in the ribosome tunnel before their N-terminus reached the ribosome exit point. The results for this assay remained consistent whether the proteins were translated in a eukaryotic or prokaryotic translation system. To examine the communication mechanism between the ribosome, the nascent chain and the protein targeting pathway, crosslinking experiments were carried out using the homobifunctional lysine cross-linker BS3. Specifically, the data generated here show that the nascent chain of GPR35 reaches the ribosomal protein uL23 in an extended conformation and interacts with the SRP protein as it exits the ribosome tunnel. This confirms the role of SRP in the co-translational targeting of GPR35. Using these methods insights into the early folding of GPCRs has been obtained. Further experiments using site-directed mutagenesis to reduce hydrophobicity in the 1st TM domain of GPR35, highlighted the mechanisms by which GPCRs are targeted to the endoplasmic reticulum. Confirming that hydrophobicity within the signal anchor sequence is essential of SRP-dependent targeting. Following the successful interaction of the nascent GPR35 and SRP, GPR35 is successfully targeted to ER membranes, shown here as dog pancreas microsomes (DPMs). Glycosylation of the GPR35 N-terminus was used to determine nascent chain structure as it is inserted into the ER membrane. These glycosylation experiments confirm that TM1 has obtained its compacted state whilst residing in the translocon. Finally, a site-specific cross-linking approach using the homobifunctional cysteine cross-linker, BMH, was used to study the lateral integration of GPR35 into the ER. Cross-linking of GPR35 TM1 and TM2 could be detected adjacent to a protein of ~45kDa, believed to be Sec61α. The loss of this adduct, as the nascent chain extends, showed the lateral movement of GPR35 TM1 from the translocon was dependent on the subsequent synthesis of TM2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Monoclonal antibodies are a class of therapeutic that is an expanding area of the lucrative biopharmaceutical industry. These complex proteins are predominantly produced from large cultures of mammalian cells; the industry standard cell line being Chinese Hamster Ovary (CHO) cells. A number of optimisation strategies have led to antibody titres from CHO cells increasing by a hundred-fold, and it has been proposed that a further bottleneck in biosynthesis is in protein folding and assembly within the secretory pathway. To alleviate this bottleneck, a CHO-derived host cell line was generated by researchers at the pharmaceutical company UCB that stably overexpressed two critical genes: XBP1, a transcription factor capable of expanding the endoplasmic reticulum and upregulating protein chaperones; and Ero1α, an oxidase that replenishes the machinery of disulphide bond formation. This host cell line, named CHO-S XE, was confirmed to have a high yield of secreted antibody. The work presented in this thesis further characterises CHO-S XE, with the aim of using the information gained to lead the generation of novel host cell lines with more optimal characteristics than CHO-S XE. In addition to antibodies, it was found that CHO-S XE had improved production of two other secreted proteins: one with a simple tertiary structure and one complex multi-domain protein; and higher levels of a number of endogenous protein chaperones. As a more controlled system of gene expression to unravel the specific roles of XBP1 and Ero1α in the secretory properties of CHO-S XE, CHO cells with inducible overexpression of XBP1, Ero1α, or a third gene involved in the Unfolded Protein Response, GADD34, were generated. From these cell lines, it was shown that more antibody was secreted by cells with induced overexpression of XBP1; however, Ero1α and GADD34 overexpression did not improve antibody yield. Further investigation revealed that endogenous XBP1 splicing was downregulated in the presence of an abundance of the active form of XBP1. This result indicated a novel aspect of the regulation of the activity of IRE1, the stress-induced endoribonuclease responsible for XBP1 splicing. Overall, the work described in this thesis confirms that the overexpression of XBP1 has an enhancing effect on the secretory properties of CHO cells; information which could contribute to the development of host cells with a greater capacity for antibody production.